Anti-SARS-CoV-2 QuantiVac ELISA (IgG)

- Quantitative ELISA for the determination of concentration of IgG antibodies against the S1 antigen (incl. RBD) of SARS-CoV-2 in a broad linear range (using a 6-point calibration curve)
- Excellent correlation with the WHO reference material “First WHO International Standard for anti-SARS-CoV-2 immunoglobulin” (NIHSC code: 20/136) – enables issuing of results in standardised units
- Very good agreement of results in comparison with different neutralisation tests
- Validated for serum, plasma and dried capillary blood as sample material

Technical data

Antigen
S1 domain of the spike protein of SARS-CoV-2, recombinantly produced in human cells, isolate Wuhan-Hu-1

Calibration
Quantitative, in relative units per millilitre (RU/ml); simple calculation of results in binding antibody units per millilitre (BAU/ml)
- Calibrator 1: 120 RU/ml
- Calibrator 2: 80 RU/ml
- Calibrator 3: 40 RU/ml
- Calibrator 4: 20 RU/ml
- Calibrator 5: 10 RU/ml
- Calibrator 6: 1 RU/ml

Recommended upper threshold of the reference range for non-infected individuals (cut-off): 10 RU/ml

Sample dilution
Serum or plasma, 1:101 in sample buffer, or 4.76 mm membrane piece containing dried capillary blood (punched out from Blood Collection Card) in 250 µl sample buffer

Reagents
Ready for use, with the exception of the wash buffer (10x); colour-coded solutions, in most cases exchangeable with those in other EUROIMMUN ELISA kits

Test procedure
60 min (37°C) / 30 min (37°C) / 30 min (RT) (sample/conjugate/substrate incubations), fully automatable

Measurement
450 nm, reference wavelength between 620 nm and 650 nm

Test kit format
96 break-off wells; kit includes all necessary reagents

Stability
12 months

Order number
EI 2606-9601-10 G

Clinical significance

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, previously called 2019-nCoV) belongs to the family of coronaviruses and, like SARS-CoV, is classified in the genus Betacoronavirus. At the end of 2019, SARS-CoV-2 was identified as the causative pathogen of clustered cases of pneumonia of unclear origin. The virus caused an infection wave which quickly spread worldwide and was declared a pandemic by the WHO at the beginning of 2020. The disease caused by SARS-CoV-2 is called COVID-19.

SARS-CoV-2 is predominantly transmitted by respiratory uptake of virus-containing droplets and aerosols produced during speaking, breathing, coughing or sneezing. The incubation time of SARS-CoV-2 is three to seven, maximally 14 days. The infection may manifest asymptomatically or with symptoms of a febrile illness with irregular lung infiltrates. Some patients, especially elderly or chronically ill patients, develop acute respiratory distress syndrome (ARDS).

Suitable methods for the diagnosis of SARS-CoV-2 infections are the detection of viral RNA by reverse transcriptase polymerase chain reaction (RT-PCR) or of virus protein by means of ELISA primarily in sample material from the upper (nasopharyngeal or oropharyngeal swab) or lower respiratory tract (bronchoalveolar lavage fluid, tracheal secretion, sputum, etc.). The determination of antibodies enables confirmation of SARS-CoV-2 infection in patients with typical symptoms and in suspected cases. It also contributes to monitoring and outbreak control. For significant serological results, two patient samples should be investigated, one from the acute phase (week 1 of the illness) and one from the convalescent phase (three to four weeks later). Cross-reactions of antibodies within the genus Betacoronavirus have been described.
Diagnostic sensitivity

The sensitivity was determined by investigating 202 samples from 194 patients (origin: Europe, USA) using the Anti-SARS-CoV-2 Quantivac ELISA (IgG). These patients had been confirmed to be infected with SARS-CoV-2 by RT-PCR based on a sample taken at the early phase of infection. The serological analysis was performed with samples taken during the further course of the infection. In samples collected up to day 10 (time point after the onset of symptoms or positive direct detection), the Anti-SARS-CoV-2 Quantivac ELISA (IgG) showed a sensitivity of 56.7%. In samples collected after day 10, the sensitivity of the Anti-SARS-CoV-2 Quantivac ELISA (IgG) amounted to 90.3%. Borderline results (n=7) were excluded. From the 46 patients with SARS-CoV-2 infection confirmed by RT-PCR based on one sample from the early infection phase, several consecutive samples were available. In 93.2% of the patients the antibody test was positive over the course from day 21 post symptom onset or positive direct detection (borderline results (n=2) excluded).

The time course of antibody secretion and the antibody activity at specific time points can vary significantly. In most patients, antibodies are detectable after day 10 post symptom onset or positive direct detection. In individual cases, a strongly delayed synthesis of IgG (> 4 weeks after onset of symptoms or positive direct detection) has been reported. The graphic shows individual immune responses in COVID-19 patients which were determined using the EUROIMMUN Anti-SARS-CoV-2 Quantivac ELISA (IgG).

*The sensitivity depends on the prevalence of specific IgG antibodies in persons with SARS-CoV-2 infections

Specitivity

The specificity of the Anti-SARS-CoV-2 Quantivac ELISA (IgG) was determined by analysing 210 patient samples that were positive for antibodies against other human pathogenic coronaviruses, other pathogens or for rheumatoid factors, as well as samples collected from 230 asymptomatic and symptomatic donors during the Zika virus outbreak in Colombia. Additionally, 1018 samples from blood donors, children and pregnant women obtained prior to the occurrence of SARS-CoV-2 (before January 2020) were analysed. The specificity of the Anti-SARS-CoV-2 Quantivac ELISA (IgG) amounted to 99.8%.

Correlation

49 samples from patients with confirmed past SARS-CoV-2 infections were investigated with the Anti-SARS-CoV-2 Quantivac ELISA (IgG) from EUROIMMUN and a PRNT_{50} (plaque reduction neutralisation test according to Wölfel et al. 2020). The qualitative results obtained with the two tests agreed to 100%.

Serial dilutions of the “First WHO International Standard for anti-SARS-CoV-2 immunoglobulin” (NIBSC code: 20/138) were investigated with the Anti-SARS-CoV-2 Quantivac ELISA (IgG). The resulting concentrations in RU/ml were converted to BAU/ml by multiplying them by the factor 3.2. The correlation analysis yielded a correlation coefficient of \(r = 0.99 \).