Anti-SARS-CoV-2 NCP ELISA (IgG)

- Sensitive detection of IgG against SARS-CoV-2 using the nucleocapsid protein
- Antigen with the strongest immune dominance in the coronavirus family
- Optimised specificity of the ELISA due to the use of a modified nucleocapsid protein (NCP) that only contains diagnostically relevant epitopes
- Validated for serum, plasma and dried capillary blood as the sample material; fully automatable

Technical data

Antigen
Modified nucleocapsid protein (NCP)

Calibration
Semi-quantitative; calculation of a ratio from the extinction of the sample and that of the calibrator

Result interpretation
EUROIMMUN recommends interpreting results as follows:
- Ratio < 0.8: negative
- Ratio ≥ 0.8 to < 1.1: borderline
- Ratio ≥ 1.1: positive

Sample dilution
Serum or plasma, 1:101 in sample buffer, or 4.76 mm punched out membrane piece with dried capillary blood in 250 μl sample buffer

Reagents
Ready for use, with the exception of the wash buffer (10x); colour-coded solutions, in most cases exchangeable with those in other EUROIMMUN ELISA kits

Test procedure
60 min (37° C) / 30 min (RT) / 15 min (RT) (sample/conjugate/substrate incubations), fully automatable

Measurement
450 nm, reference wavelength between 620 nm and 650 nm

Test kit format
96 break-off wells; kit includes all necessary reagents

Stability
12 months

Order number
El 2606-9601-2 G; El 2606-9620-2 G (designed especially for processing on the EUROLabWorkstation ELISA)

Clinical significance

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, previously called 2019-nCoV) belongs to the family of coronaviruses and, like SARS-CoV, is classified in the genus Betacoronavirus. At the end of 2019, SARS-CoV-2 was identified as the causative pathogen in a cluster of pneumonia cases of unclear origin. The virus caused an infection wave that has spread rapidly over the world and was declared a pandemic by the WHO at the beginning of 2020.

SARS-CoV-2 is mainly transmitted via aerosols during coughing or sneezing or at close contact with an infected person. Health care personnel and family members are especially at risk. The zoonotic reservoir of the virus appears to be bats. The incubation time of SARS-CoV-2 is three to seven, maximally 14 days. The symptoms of SARS-CoV-2 infection are fever, coughing, breathing difficulties and fatigue. In most patients the infection manifests with symptoms of a mild febrile illness with irregular lung infiltrates. Some patients, especially elderly or chronically ill patients, develop acute respiratory distress syndrome (ARDS). The fatality rate is between 0.6 and 7.2%, depending on the country. In February 2020, the disease caused by SARS-CoV-2 was named COVID-19 by the WHO.

Suitable methods for the diagnosis of SARS-CoV-2 infections are the detection of viral RNA by reverse transcriptase polymerase chain reaction (RT-PCR) or of virus protein by means of ELISA primarily in sample material from the upper (nasopharyngeal or oropharyngeal swab) or lower respiratory tract (bronchoalveolar lavage fluid, tracheal secretion, sputum, etc.). The determination of antibodies enables confirmation of SARS-CoV-2 infection in patients with typical symptoms and in suspected cases. It also contributes to monitoring and outbreak control. For significant serological results, two patient samples should be investigated, one from the acute phase (week 1 of the illness) and one from the convalescent phase (3 to 4 weeks later).

Cross reactions with antibodies within the genus Betacoronavirus have been described. Currently, there is no medication or vaccine available against infection with this new virus.
Diagnostic sensitivity (prevalence)

The sensitivity was determined by investigating 74 samples from 69 European patients using the Anti-SARS-CoV-2 NCP ELISA (IgG). In these patients, infections with SARS-CoV-2 had been confirmed by RT-PCR based on a sample taken at the early phase of infection. The serological examination was based on samples collected during the further course of the infection. In samples taken until day 10 (time point after symptom onset or positive direct detection), the Anti-SARS-CoV-2 NCP ELISA (IgG) showed a sensitivity of 80.0%. The sensitivity of the Anti-SARS-CoV-2 ELISA (IgG) in samples collected after day 10 was 94.6%.

The graph shows two individual immune responses in COVID-19 patients measured with the EUROIMMUN Anti-SARS-CoV-2 ELISAs (IgA, IgG) based on the recombinantly expressed spike protein domain S1 and the EUROIMMUN Anti-SARS-CoV-2 NCP ELISA (IgG) using the modified nucleocapsid protein (NCP) as the antigen. Patient 1 (47 years old): The anti-SARS-CoV-2 NCP IgG antibody level was elevated as early as day 8 after the onset of symptoms. Anti-SARS-CoV-2 S1 antibodies (IgA and IgG) were not yet detectable. The follow-up sample taken on day 11 after symptom onset showed an increase in the antibody levels for both Ig classes. Patient 2 (58 years old): The Anti-SARS-CoV-2 S1 IgA antibody level was already highly elevated 12 days after the first positive RT-PCR. In contrast, the levels of anti-SARS-CoV-2 S1 and anti-SARS-CoV-2 NCP IgG antibodies increased only slowly until day 43 after positive RT-PCR.

The time course of antibody secretion and the antibody activity at specific time points can vary significantly. In most patients, antibodies are detectable after day 10 after symptom onset or positive direct detection. In individual cases, however, a significantly delayed synthesis of IgG (> 4 weeks after symptom onset or positive detection) has been reported.

Specificity

The specificity of the Anti-SARS-CoV-2 NCP ELISA (IgG) was determined by investigating 226 patient sera that were positive, for instance, for antibodies against other human pathogenic coronaviruses, other pathogens or for rheumatoid factors. Additionally, 1022 samples from blood donors, children and pregnant women obtained before the occurrence of SARS-CoV-2 (before January 2020) were analysed. Cross reactions with other human pathogenic coronaviruses were not observed. The specificity of the Anti-SARS-CoV-2 NCP ELISA (IgG) thus amounted to 99.8%.

Method comparison

The correlation between extracts of dried blood spots (DBS) from capillary blood and serum from venous blood was determined by analysing 215 patient samples collected in Europe, using the Anti-SARS-CoV-2 NCP ELISA (IgG). For each patient, one capillary blood sample and one venous blood sample were available. The agreement between the results of the dried capillary blood spots and the venous blood samples was 99.5% (positive agreement: 98.4%; negative agreement: 100%). Borderline samples were excluded from the calculation.

Literature